Principle and Pre-Calculus Math 11

1.5 Lab - Geometric Series Lab

Unit

8

By the end of this lesson I will be able to:

- Identify infinite geometric series
- Convergent vs. Divergent

ANSWER KEY

Part A: Geometric Sequences

1) Choose a positive first term. Choose a common ratio, r, in each of the intervals in the table below. For each common ratio, create the first 5 terms of a geometric sequence.

<u>Assume</u>: t₁ = 10

Interval	Common ratio, r	Geometric Sequence		
r > 1	Example: $r = 2$	10, 20, 40, 80, 160		
0 < <i>r</i> < 1	$r = \frac{1}{2}$	10, 5, 2.5, 1.25, 0.625		
-1 < r < 0	$r = -\frac{1}{2}$	10, -5, 2.5, -1.25, 0.625		
r < -1	r = -2	10, -20, 40, -80, 160		

b) For each <u>SEQUENCE</u>:

Graph the terms numbers on the horizontal axis and the terms values on the vertical axis. Sketch and label each graph on a grid below.

c) What happens to the term values as more points are plotted for these sequences?

As more points are plotted:

<i>r</i> > 1	They move further from the x-axis; Further away from zero. (Up to the right - increasing)	
0 < <i>r</i> < 1	They move closer to the x-axis; Closer to zero. (Down and to the right - decreasing)	
-1 < r < 0	Each point moves closer to the x-axis, although alternating sides (Alternating – closer to zero)	
r < -1	Each point moves further from the x-axis, alternating above and below (Alternating – further from zero)	

Part B: Geometric Series

- 2) Use the four geometric sequences in Part A to create four corresponding geometric series.
- a) For each series, complete the table below by calculating these partial sums:

Using $t_1 = 10$, calculate: S_1, S_2, S_3, S_4, S_5

Interval	Common ratio, r	<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄	\$ ₅
r > 1	r = 2	10	30	70	150	310
0 < <i>r</i> < 1	$r = \frac{1}{2}$	10	15	17.5	18.75	19.375
-1 < r < 0	$r = -\frac{1}{2}$	10	5	7.5	6.25	6.875
r < -1	r = -2	10	-10	30	-50	110

b) Graph the numbers of terms in the partial sums on the horizontal axis and the partial sums on the vertical axis. Sketch and label each graph on a grid below.

c) What happens to the term values as more points are plotted for these <u>series</u>?

As more points are plotted:

<i>r</i> > 1	They move further from the x-axis; Further away from zero.(Up to the right - increasing)Divergent			
0 < <i>r</i> < 1	They move closer to a single point (Closer towards $x = 20$) <u>Convergent</u>			
-1 < r < 0	They move closer to a single point (Closer towards $x = 6.67$) <u>Convergent</u>			
r < -1	They move further from the x-axis; Further away from zero.(Alternating around x-axis - increasing)Divergent			

New Definitions:

<u>**Convergent Series</u>** - If the sequence of the partial sums converges to a constant value as the number of terms increases, then the geometric series is convergent.</u>

• The partial sums (S_n) keep getting closer to a constant value so it is called a convergent series.

Divergent Series - If the sequence of the partial sums does not converge to a constant value as the number of terms increases, then the geometric series is divergent.

• The partial sums (S_n) keep getting farther away from a constant value and closer ∞ or $-\infty$ so it is called a divergent series.