Principle and Pre-Calculus Math 11
 1.5 Lab - Geometric Series Lab
 By the end of this lesson I will be able to:
 - Identify infinite geometric series
 - Convergent vs. Divergent

ANSWER KEY

Part A: Geometric Sequences

1) Choose a positive first term. Choose a common ratio, r, in each of the intervals in the table below. For each common ratio, create the first 5 terms of a geometric sequence.

Assume: $\mathrm{t}_{1}=10$

Interval	Common ratio, \mathbf{r}	Geometric Sequence
$r>1$	Example: $r=2$	$10,20,40,80,160 \ldots$
$0<r<1$	$r=\frac{1}{2}$	$10,5,2.5,1.25,0.625 \ldots$
$-1<r<0$	$r=-\frac{1}{2}$	$10,-5,2.5,-1.25,0.625 \ldots$
$r<-1$	$r=-2$	$10,-20,40,-80,160 \ldots$

b) For each SEQUENCE:

Graph the terms numbers on the horizontal axis and the terms values on the vertical axis. Sketch and label each graph on a grid below.

$$
r>1
$$

$0<r<1$
$-1<r<0$

$r<-1$

c) What happens to the term values as more points are plotted for these sequences?

As more points are plotted:

$r>1$	They move further from the x-axis; Further away from zero. (Up to the right - increasing)
$0<r<1$	They move closer to the x-axis; Closer to zero.
(Down and to the right - decreasing)	

Part B: Geometric Series

2) Use the four geometric sequences in Part A to create four corresponding geometric series.
a) For each series, complete the table below by calculating these partial sums:

Using $t_{1}=10$, calculate: $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$

Interval	Common ratio, \mathbf{r}	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$	$\boldsymbol{S}_{\mathbf{4}}$	$\boldsymbol{S}_{\mathbf{5}}$
$r>1$	$r=2$	10	30	70	150	310
$0<r<1$	$r=\frac{1}{2}$	10	15	$\mathbf{1 7 . 5}$	18.75	19.375
$-1<r<0$	$r=-\frac{1}{2}$	10	5	7.5	6.25	6.875
$r<-1$	$r=-2$	10	-10	30	-50	110

b) Graph the numbers of terms in the partial sums on the horizontal axis and the partial sums on the vertical axis. Sketch and label each graph on a grid below.
$r>1$

$-\mathbf{1}<r<\mathbf{0}$

$0<r<1$

$$
\begin{array}{lllll}
S_{1} & S_{2} & S_{3} & S_{4} & S_{5}
\end{array}
$$

$$
r<-1
$$

c) What happens to the term values as more points are plotted for these series?

As more points are plotted:

$r>1$	They move further from the x-axis; Further away from zero. (Up to the right - increasing) Divergent
$0<r<1$	They move closer to a single point (Closer towards $\boldsymbol{x}=\mathbf{2 0}$) Convergent
$-1<r<0$	They move closer to a single point (Closer towards $\boldsymbol{x}=6.67$) Convergent
$r<-1$	They move further from the x-axis; Further away from zero. (Alternating around x -axis - increasing) Divergent

New Definitions:

Convergent Series - If the sequence of the partial sums converges to a constant value as the number of terms increases, then the geometric series is convergent.

- The partial sums $\left(S_{n}\right)$ keep getting closer to a constant value so it is called a convergent series.

Divergent Series - If the sequence of the partial sums does not converge to a constant value as the number of terms increases, then the geometric series is divergent.

- The partial sums $\left(S_{n}\right)$ keep getting farther away from a constant value and closer ∞ or $-\infty$ so it is called a divergent series.

